DARWINIAN NETWORKS

Introducing Darwinian Networks

Cory J. Butz Jhonatan S. Oliveira André E. dos Santos

Department of Computer Science University of Regina Regina, S4S 0A2, Canada

www.darwiniannetworks.com

28th FLAIRS Conference Hollywood, Florida, USA May 18th, 2015

Outline of the Presentation

- 1. Motivation
- 2. Darwinian Networks
 - 2.1 Inference
 - · Variable Elimination
 - · Arc-Reversal
 - · Lazy Propagation
 - 2.2 Modeling (Testing Independencies)

- $\cdot \ \text{m-Separation}$
- $\cdot \ \, \text{d-Separation}$
- 3. Advantages
- 4. Conclusions

1. Motivation

Understanding *Bayesian network* (BN) inference is not easy.

We sought a *purely graphical approach* for BN inference.

The representation took on a biological feel (Darwinian Networks).

We then observed that Darwinian Networks could represent, simplify, and speed-up the testing of independencies.

And determine good elimination orderings.

Surprisingly simple, remarkably robust.

A Bayesian Network (BN) consists of:

- a directed acyclic graph (DAG),
- a matching set of *conditional probability tables* (CPTs).

Example: BN

 $P(U) = P(a) \cdot P(b|a) \cdot P(c|h) \cdot P(d|h) \cdot P(e|c,d) \cdots P(g|e,f)$

2. Darwinian Networks (DNs)

A CPT P(X|Y) is represented as a population p(X, Y).

The variables in the LHS X are *white*.

The variables in the RHS Y are black.

CPT P(e|c, d) is depicted as population p(e, cd).

2. Darwinian Networks

A Darwinian Network (DN) is a finite, multiset of populations.

A DN is depicted by a dashed closed curve around its populations.

Populations: p(a), p(b, a), p(c, h), p(d, h), p(e, cd), p(f, a), p(h, b), p(g, ef)

Every BN can be represented as a DN

イロト イポト イヨト イヨト

æ

2.1 Inference

BN inference is called *evolution* in DNs.

We first introduce operations on populations corresponding to:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- multiplication,
- division,
- marginalization.

Multiplication is the Merge of Populations

$$P(c|h) \cdot P(e|c,d) = P(c,e|d,h)$$

- o white + o black = o white
- black + \mathbf{o} white = \mathbf{o} white
- black + black = black

o white + o white = o black

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Merge also represents Division

$$P(a,b) / P(b) = P(a|b)$$

- \circ white + \circ black = \circ white
- black + o white = o white
- black + black = black

o white + o white = o black

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Marginalization is Replication then Natural Selection

$$\sum_{c} P(c, e|d, h) = P(e|d, h)$$

$$\stackrel{\text{oc} \bullet d}{\underset{\text{e} \bullet h}{\overset{\text{oc} \bullet d}{\underset{\text{e} \bullet h}{\overset{\text{oc} \bullet d}{\underset{\text{oe} \bullet h}{\overset{\text{oe} \bullet h}{\underset{\text{Natural selection}}}}} = P(e|d, h)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

As DNs can represent multiplication, division, and marginalization, it follows that DNs can represent exact inference algorithms, including:

- Variable Elimination (VE) (Zhang and Poole, 1994),
- Arc-Reversal (AR) (Olmsted, 1983),
- Lazy Propagation (LP) (Madsen and Jensen, 1999).

Variable Elimination (VE)

To answer P(e|b), VE computes:

$$P(c, e|d, h) = P(c|h) \cdot P(e|c, d), \qquad (1)$$

$$P(e|d,h) = \sum_{c} P(c,e|d,h), \qquad (2)$$

$$P(d, e|h) = P(d|h) \cdot P(e|d, h), \qquad (3)$$

$$P(e|h) = \sum_{d} P(d, e|h), \qquad (4)$$

$$P(e,h|b) = P(h|b) \cdot P(e|h), \qquad (5)$$

$$P(e|b) = \sum P(e,h|b). \qquad (6)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$P(c|h) \cdot P(e|c,d) = P(c,e|d,h)$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\sum_{c} P(c, e|d, h) = P(e|d, h)$$
(2)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

$$P(e|d,h) \cdot P(d|h) = P(d,e|h)$$
(3)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Replication

$$\sum_{d} P(d, e|h) = P(e|h)$$
(4)

Natural selection

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$P(e|h) \cdot P(h|b) = P(e,h|b)$$
(5)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$\sum_{h} P(e, h|b) = P(e|b)$$
(6)

Query P(e|b) is represented as population p(e, b).

Koller and Friedman (2009) introduce readers to BN inference using VE.

There is a one-to-one correspondence between VE's mathematical equations and the DN illustrations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hence, one can learn VE without involving a single equation.

DNs can represent Arc-Reversal (AR)

AR eliminates a variable v_i by reversing the arc (v_i, v_j) between v_i and each child v_j of v_i .

$$P(v_i, v_j | P_i P_j) = P(v_i | P_i) \cdot P(v_j | P_j),$$

$$P(v_j | P_i P_j) = \sum_{v_i} P(v_i, v_j | P_i P_j),$$

$$P(v_i | P_i P_j v_j) = \frac{P(v_i, v_j | P_i P_j)}{P(v_j | P_i P_j)}.$$

AR only involves multiplication, division, and marginalization.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lazy Propagation (LP)

BN variables are clustered into nodes, organized as a join tree.

Each BN CPT is assigned to a join tree node.

Messages are propagated systematically.

LP only involves multiplication, division, and marginalization.

DNs can represent LP

A join tree is represented as a set of DNs.

Each join tree node is represented as one DN.

A propagated message from a join tree node to another is viewed as a population *migrating* from one DN to another.

2.2 Modeling - Testing Independencies in BNs

m-Separation (Lauritzen et al., 1990; Zhang and Poole, 1994) tests I(X, Y, Z) in an undirected graph with four steps:

(i) construct the sub-DAG onto $XYZ \cup An(XYZ)$;

- (ii) construct the *moralization* by adding an undirected edge between each pair of parents of a common child and then dropping directionality;
- (iii) delete Y and its incident edges;
- (iv) if there exists a path from X to Z, then I(X, Y, Z) does not hold; otherwise, I(X, Y, Z) holds.

Example: m-Separation I(a, d, f)

and check for path

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Testing independencies in BNs is represented as testing *adaptation* in DNs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We observe how populations *adapt* to the removal of other populations.

Adaptation: Testing Independence I(a, d, f) in DNs

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

DNs Simplify m-Separation

Moralization of m-separation can be excessive.

Adding edge (b, e) is necessary, since d will be deleted.

Adding edge (a, g) is unnecessary, since b will not be deleted.

DN Contribution (Rationalization)

When testing I(X, Y, Z), add an undirected edge between variables with a common child only when the child is in Y.

Modeling - Testing Independencies with d-Separation

Algorithm 3.1 Find nodes reachable from X given Y via active paths in DAG B1: procedure REACHABLE(X, Y, \mathcal{B}) Phase I: insert Y and all ancestors of Y into A 2: 3: $An(Y) \leftarrow ANCESTORS(Y, \mathcal{B})$ 4: $A \leftarrow An(Y) \cup Y$ 5: \triangleright Phase II: traverse active paths starting from X 6: for $v \in X$ do > (Node, direction) to be visited $L \leftarrow L \cup \{(\uparrow, v)\}$ 7: > (Node, direction) marked as visited 8: $V \leftarrow \emptyset$ $R \leftarrow \emptyset$ Nodes reachable via active path 9: while $L \neq \emptyset$ do \triangleright While variables to be checked 10: 11: Select (d, v) in L 12: $L \leftarrow L - \{(d, v)\}$ if $(d, v) \notin V$ then 13: if $v \notin Y$ then 14. $R \leftarrow R \cup \{v\}$ 15: $\triangleright v$ is reachable 16: $V \leftarrow V \cup \{(d, v)\} \triangleright \text{Mark}(d, v)$ as visited 17: if $d = \uparrow$ and $v \notin Y$ then 18. for $v_i \in Pa(v)$ do 19: $L \leftarrow L \cup \{(\uparrow, v_i)\}$ for $v_i \in Ch(v)$ do 20. $L \leftarrow L \cup \{(\downarrow, v_i)\}$ 21: else if $d = \downarrow$ then 22: 23: if $v \notin Y$ then for $v_i \in Ch(v)$ do 24: 25: $L \leftarrow L \cup \{(\downarrow, v_i)\}$ if $v \in A$ then 26. 27: for $v_i \in Pa(v)$ do $L \leftarrow L \cup \{(\uparrow, v_i)\}$ 28: 29: return R

Geiger et al. (1989) provide a linear time complexity algorithm for implementing d-separation.

Implementation of d-separation given by Koller and Friedman (2009).

DNs Simplify d-Separation

The main idea is to start from X, follow active paths, and see if it reaches Z.

The linear implementation of d-separation considers all active paths until they become blocked.

The DN improvement is the identification of a class of active paths that are doomed to become blocked.

Thus, there is no benefit to exploring these paths.

Example: Testing *I*(*nedbarea*,*markgrm*,*dgv*5980) in Barley Any path through *aar_mod* will eventually become blocked.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

DN Contribution

Stop traversing active paths that are doomed to become blocked.

BN	<i>N</i>	d-Sep	i-Sep	Test	Time
		Tests	Tests	Savings	Savings
Insurance	27	58898	36642	38%	-22%
Water	32	41392	23959	42%	-27%
Alarm	37	35224	23078	34%	-11%
Barley	48	78794	56804	28%	-15%
Hailfinder	56	51922	42543	18%	-23%
Pathfinder	135	125932	62820	50%	-79%
Munin1	186	167809	64329	62%	14%
Diabetes	413	827291	681468	18%	11%
Pigs	441	116795	12841	89%	36%
Link	724	336780	75505	78%	38%
Munin4	1038	509299	77314	85%	47%
Munin3	1041	459409	50147	89%	55%

3. Advantages - Surprisingly Simple, Remarkably Robust

- In modeling, d-separation can use specialized terminology not referenced in inference such as "open sequential valves" and "closed divergent valves."
- In inference, LP involves specialized terminology not referenced in modeling such as the "running intersection property."
- DNs use the same terminology for inference and modeling.

Representing All Steps of LP in DNs

- LP involves 2 networks.
- LP tests independencies in a BN, yet conducts inference in a JT.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• DNs do both in the same network.

All Steps of VE: BN, query, independencies, computation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Determining Good Elimination Orderings

- The order in which variables are eliminated can have a profound impact on the amount of computation performed.
- DNs can represent four well-known heuristics for determining good elimination orderings in BNs:
 - min-neighbours (MN),
 - min-weight (MW),
 - min-fill (MF),
 - weighted-min-fill (WMF).
- We introduced a new heuristic, called *potential energy* (PE), based on DNs.

• PE can score more accurately than the above heuristics.

4. Conclusion

- Purely graphical approach to VE, which is often used to introduce BN inference to beginners
- Faster way to test independencies in BNs
- Unify modeling and inference into one network using common terminology
- DNs are like looking at BNs through a microscope

Watch www.darwiniannetworks.com for updates

DARWINIAN NETWORKS

Kilroy, Jeff. Darwin "I think..." 2009. Kilrizzy's deviantART gallery. deviantART. 2015. Web. 23 Apr. 2015. 🎙 🗅 🕨 🕇 🖓 🔍 🕄 🔊 🔍