


Introducing Darwinian Networks

Cory J. Butz Jhonatan S. Oliveira André E. dos Santos
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1. Motivation

Understanding Bayesian network (BN) inference is not easy.

We sought a purely graphical approach for BN inference.

The representation took on a biological feel (Darwinian Networks).

We then observed that Darwinian Networks could represent,
simplify, and speed-up the testing of independencies.

And determine good elimination orderings.

Surprisingly simple, remarkably robust.



Bayesian Networks

A Bayesian Network (BN) consists of:

• a directed acyclic graph (DAG),

• a matching set of conditional probability tables (CPTs).



Example: BN

P(U) = P(a) · P(b|a) · P(c |h) · P(d |h) · P(e|c , d) · · ·P(g |e, f )



2. Darwinian Networks (DNs)

A CPT P(X |Y ) is represented as a population p(X ,Y ).

The variables in the LHS X are white.

The variables in the RHS Y are black.

CPT P(e|c , d) is depicted as population p(e, cd).



2. Darwinian Networks

A Darwinian Network (DN) is a finite, multiset of populations.

A DN is depicted by a dashed closed curve around its populations.

Populations:
p(a), p(b, a), p(c , h), p(d , h), p(e, cd), p(f , a), p(h, b), p(g , ef )



Every BN can be represented as a DN



2.1 Inference

BN inference is called evolution in DNs.

We first introduce operations on populations corresponding to:

• multiplication,

• division,

• marginalization.



Multiplication is the Merge of Populations

P(c|h) · P(e|c , d) = P(c , e|d , h)



Merge also represents Division

P(a, b) / P(b) = P(a|b)



Marginalization is Replication then Natural Selection

∑
c

P(c , e|d , h) = P(e|d , h)



DNs can represent BN Inference Algorithms

As DNs can represent multiplication, division, and marginalization,
it follows that DNs can represent exact inference algorithms,
including:

• Variable Elimination (VE) (Zhang and Poole, 1994),

• Arc-Reversal (AR) (Olmsted, 1983),

• Lazy Propagation (LP) (Madsen and Jensen, 1999).



Variable Elimination (VE)

To answer P(e|b), VE computes:

P(c, e|d , h) = P(c |h) · P(e|c , d), (1)

P(e|d , h) =
∑
c

P(c , e|d , h), (2)

P(d , e|h) = P(d |h) · P(e|d , h), (3)

P(e|h) =
∑
d

P(d , e|h), (4)

P(e, h|b) = P(h|b) · P(e|h), (5)

P(e|b) =
∑
h

P(e, h|b). (6)



Example: Representing VE as DN Evolution

P(c|h) · P(e|c , d) = P(c , e|d , h) (1)



Example: Representing VE as DN Evolution

∑
c

P(c , e|d , h) = P(e|d , h) (2)



Example: Representing VE as DN Evolution

P(e|d , h) · P(d |h) = P(d , e|h) (3)



Example: Representing VE as DN Evolution

∑
d

P(d , e|h) = P(e|h) (4)



Example: Representing VE as DN Evolution

P(e|h) · P(h|b) = P(e, h|b) (5)



Example: Representing VE as DN Evolution

∑
h

P(e, h|b) = P(e|b) (6)

Query P(e|b) is represented as population p(e, b).



DN Advantage

Koller and Friedman (2009) introduce readers to BN inference
using VE.

There is a one-to-one correspondence between VE’s mathematical
equations and the DN illustrations.

Hence, one can learn VE without involving a single equation.



DNs can represent Arc-Reversal (AR)

AR eliminates a variable vi by reversing the arc (vi , vj) between vi
and each child vj of vi .

P(vi , vj |PiPj) = P(vi |Pi ) · P(vj |Pj),

P(vj |PiPj) =
∑
vi

P(vi , vj |PiPj),

P(vi |PiPjvj) =
P(vi , vj |PiPj)

P(vj |PiPj)
.

AR only involves multiplication, division, and marginalization.



Lazy Propagation (LP)

BN variables are clustered into nodes, organized as a join tree.

Each BN CPT is assigned to a join tree node.

Messages are propagated systematically.

LP only involves multiplication, division, and marginalization.



DNs can represent LP
A join tree is represented as a set of DNs.

Each join tree node is represented as one DN.

A propagated message from a join tree node to another is viewed
as a population migrating from one DN to another.



2.2 Modeling - Testing Independencies in BNs

m-Separation (Lauritzen et al., 1990; Zhang and Poole, 1994)
tests I (X ,Y ,Z ) in an undirected graph with four steps:

(i) construct the sub-DAG onto XYZ ∪ An(XYZ );

(ii) construct the moralization by adding an undirected edge
between each pair of parents of a common child and then
dropping directionality;

(iii) delete Y and its incident edges;

(iv) if there exists a path from X to Z , then I (X ,Y ,Z ) does not
hold; otherwise, I (X ,Y ,Z ) holds.



Example: m-Separation I (a, d , f )



DNs can represent m-Separation

Testing independencies in BNs is represented as testing adaptation
in DNs.

We observe how populations adapt to the removal of other
populations.



Adaptation: Testing Independence I (a, d , f ) in DNs



DNs Simplify m-Separation
Moralization of m-separation can be excessive.

Adding edge (b, e) is necessary, since d will be deleted.

Adding edge (a, g) is unnecessary, since b will not be deleted.



DN Contribution (Rationalization)

When testing I (X ,Y ,Z ), add an undirected edge between
variables with a common child only when the child is in Y .



Modeling - Testing Independencies with d-Separation

Geiger et al. (1989) provide a
linear time complexity algorithm
for implementing d-separation.

Implementation of d-separation
given by Koller and Friedman
(2009).



DNs Simplify d-Separation

The main idea is to start from X , follow active paths, and see if it
reaches Z .

The linear implementation of d-separation considers all active
paths until they become blocked.

The DN improvement is the identification of a class of active paths
that are doomed to become blocked.

Thus, there is no benefit to exploring these paths.



Example: Testing I (nedbarea,markgrm,dgv5980) in Barley
Any path through aar mod will eventually become blocked.



DN Contribution

Stop traversing active paths that are doomed to become blocked.

BN |N| d-Sep
Tests

i-Sep
Tests

Test
Savings

Time
Savings

Insurance 27 58898 36642 38% -22%
Water 32 41392 23959 42% -27%
Alarm 37 35224 23078 34% -11%
Barley 48 78794 56804 28% -15%
Hailfinder 56 51922 42543 18% -23%
Pathfinder 135 125932 62820 50% -79%
Munin1 186 167809 64329 62% 14%
Diabetes 413 827291 681468 18% 11%
Pigs 441 116795 12841 89% 36%
Link 724 336780 75505 78% 38%
Munin4 1038 509299 77314 85% 47%
Munin3 1041 459409 50147 89% 55%



3. Advantages - Surprisingly Simple, Remarkably Robust

• In modeling, d-separation can use specialized terminology not
referenced in inference such as “open sequential valves” and
“closed divergent valves.”

• In inference, LP involves specialized terminology not
referenced in modeling such as the “running intersection
property.”

• DNs use the same terminology for inference and modeling.



Representing All Steps of LP in DNs

• LP involves 2 networks.

• LP tests independencies in a BN, yet conducts inference in a JT.

• DNs do both in the same network.



All Steps of VE: BN, query, independencies, computation



Determining Good Elimination Orderings

• The order in which variables are eliminated can have a
profound impact on the amount of computation performed.

• DNs can represent four well-known heuristics for determining
good elimination orderings in BNs:

◦ min-neighbours (MN),
◦ min-weight (MW),
◦ min-fill (MF),
◦ weighted-min-fill (WMF).

• We introduced a new heuristic, called potential energy (PE),
based on DNs.

• PE can score more accurately than the above heuristics.



4. Conclusion

• Purely graphical approach to VE, which is often used to
introduce BN inference to beginners

• Faster way to test independencies in BNs

• Unify modeling and inference into one network using common
terminology

• DNs are like looking at BNs through a microscope

Watch www.darwiniannetworks.com for updates

www.darwiniannetworks.com



