

Introducing Darwinian Networks

Cory J. Butz Jhonatan S. Oliveira André E. dos Santos

Department of Computer Science
University of Regina

Regina, S4S 0A2, Canada

www.darwiniannetworks.com

28th FLAIRS Conference
Hollywood, Florida, USA

May 18th, 2015

www.darwiniannetworks.com

Outline of the Presentation
1. Motivation

2. Darwinian Networks

2.1 Inference
· Variable Elimination
· Arc-Reversal
· Lazy Propagation

2.2 Modeling (Testing Independencies)
· m-Separation
· d-Separation

3. Advantages

4. Conclusions

1. Motivation

Understanding Bayesian network (BN) inference is not easy.

We sought a purely graphical approach for BN inference.

The representation took on a biological feel (Darwinian Networks).

We then observed that Darwinian Networks could represent,
simplify, and speed-up the testing of independencies.

And determine good elimination orderings.

Surprisingly simple, remarkably robust.

Bayesian Networks

A Bayesian Network (BN) consists of:

• a directed acyclic graph (DAG),

• a matching set of conditional probability tables (CPTs).

Example: BN

P(U) = P(a) · P(b|a) · P(c |h) · P(d |h) · P(e|c , d) · · ·P(g |e, f)

2. Darwinian Networks (DNs)

A CPT P(X |Y) is represented as a population p(X ,Y).

The variables in the LHS X are white.

The variables in the RHS Y are black.

CPT P(e|c , d) is depicted as population p(e, cd).

2. Darwinian Networks

A Darwinian Network (DN) is a finite, multiset of populations.

A DN is depicted by a dashed closed curve around its populations.

Populations:
p(a), p(b, a), p(c , h), p(d , h), p(e, cd), p(f , a), p(h, b), p(g , ef)

Every BN can be represented as a DN

2.1 Inference

BN inference is called evolution in DNs.

We first introduce operations on populations corresponding to:

• multiplication,

• division,

• marginalization.

Multiplication is the Merge of Populations

P(c|h) · P(e|c , d) = P(c , e|d , h)

Merge also represents Division

P(a, b) / P(b) = P(a|b)

Marginalization is Replication then Natural Selection

∑
c

P(c , e|d , h) = P(e|d , h)

DNs can represent BN Inference Algorithms

As DNs can represent multiplication, division, and marginalization,
it follows that DNs can represent exact inference algorithms,
including:

• Variable Elimination (VE) (Zhang and Poole, 1994),

• Arc-Reversal (AR) (Olmsted, 1983),

• Lazy Propagation (LP) (Madsen and Jensen, 1999).

Variable Elimination (VE)

To answer P(e|b), VE computes:

P(c, e|d , h) = P(c |h) · P(e|c , d), (1)

P(e|d , h) =
∑
c

P(c , e|d , h), (2)

P(d , e|h) = P(d |h) · P(e|d , h), (3)

P(e|h) =
∑
d

P(d , e|h), (4)

P(e, h|b) = P(h|b) · P(e|h), (5)

P(e|b) =
∑
h

P(e, h|b). (6)

Example: Representing VE as DN Evolution

P(c|h) · P(e|c , d) = P(c , e|d , h) (1)

Example: Representing VE as DN Evolution

∑
c

P(c , e|d , h) = P(e|d , h) (2)

Example: Representing VE as DN Evolution

P(e|d , h) · P(d |h) = P(d , e|h) (3)

Example: Representing VE as DN Evolution

∑
d

P(d , e|h) = P(e|h) (4)

Example: Representing VE as DN Evolution

P(e|h) · P(h|b) = P(e, h|b) (5)

Example: Representing VE as DN Evolution

∑
h

P(e, h|b) = P(e|b) (6)

Query P(e|b) is represented as population p(e, b).

DN Advantage

Koller and Friedman (2009) introduce readers to BN inference
using VE.

There is a one-to-one correspondence between VE’s mathematical
equations and the DN illustrations.

Hence, one can learn VE without involving a single equation.

DNs can represent Arc-Reversal (AR)

AR eliminates a variable vi by reversing the arc (vi , vj) between vi
and each child vj of vi .

P(vi , vj |PiPj) = P(vi |Pi) · P(vj |Pj),

P(vj |PiPj) =
∑
vi

P(vi , vj |PiPj),

P(vi |PiPjvj) =
P(vi , vj |PiPj)

P(vj |PiPj)
.

AR only involves multiplication, division, and marginalization.

Lazy Propagation (LP)

BN variables are clustered into nodes, organized as a join tree.

Each BN CPT is assigned to a join tree node.

Messages are propagated systematically.

LP only involves multiplication, division, and marginalization.

DNs can represent LP
A join tree is represented as a set of DNs.

Each join tree node is represented as one DN.

A propagated message from a join tree node to another is viewed
as a population migrating from one DN to another.

2.2 Modeling - Testing Independencies in BNs

m-Separation (Lauritzen et al., 1990; Zhang and Poole, 1994)
tests I (X ,Y ,Z) in an undirected graph with four steps:

(i) construct the sub-DAG onto XYZ ∪ An(XYZ);

(ii) construct the moralization by adding an undirected edge
between each pair of parents of a common child and then
dropping directionality;

(iii) delete Y and its incident edges;

(iv) if there exists a path from X to Z , then I (X ,Y ,Z) does not
hold; otherwise, I (X ,Y ,Z) holds.

Example: m-Separation I (a, d , f)

DNs can represent m-Separation

Testing independencies in BNs is represented as testing adaptation
in DNs.

We observe how populations adapt to the removal of other
populations.

Adaptation: Testing Independence I (a, d , f) in DNs

DNs Simplify m-Separation
Moralization of m-separation can be excessive.

Adding edge (b, e) is necessary, since d will be deleted.

Adding edge (a, g) is unnecessary, since b will not be deleted.

DN Contribution (Rationalization)

When testing I (X ,Y ,Z), add an undirected edge between
variables with a common child only when the child is in Y .

Modeling - Testing Independencies with d-Separation

Geiger et al. (1989) provide a
linear time complexity algorithm
for implementing d-separation.

Implementation of d-separation
given by Koller and Friedman
(2009).

DNs Simplify d-Separation

The main idea is to start from X , follow active paths, and see if it
reaches Z .

The linear implementation of d-separation considers all active
paths until they become blocked.

The DN improvement is the identification of a class of active paths
that are doomed to become blocked.

Thus, there is no benefit to exploring these paths.

Example: Testing I (nedbarea,markgrm,dgv5980) in Barley
Any path through aar mod will eventually become blocked.

DN Contribution

Stop traversing active paths that are doomed to become blocked.

BN |N| d-Sep
Tests

i-Sep
Tests

Test
Savings

Time
Savings

Insurance 27 58898 36642 38% -22%
Water 32 41392 23959 42% -27%
Alarm 37 35224 23078 34% -11%
Barley 48 78794 56804 28% -15%
Hailfinder 56 51922 42543 18% -23%
Pathfinder 135 125932 62820 50% -79%
Munin1 186 167809 64329 62% 14%
Diabetes 413 827291 681468 18% 11%
Pigs 441 116795 12841 89% 36%
Link 724 336780 75505 78% 38%
Munin4 1038 509299 77314 85% 47%
Munin3 1041 459409 50147 89% 55%

3. Advantages - Surprisingly Simple, Remarkably Robust

• In modeling, d-separation can use specialized terminology not
referenced in inference such as “open sequential valves” and
“closed divergent valves.”

• In inference, LP involves specialized terminology not
referenced in modeling such as the “running intersection
property.”

• DNs use the same terminology for inference and modeling.

Representing All Steps of LP in DNs

• LP involves 2 networks.

• LP tests independencies in a BN, yet conducts inference in a JT.

• DNs do both in the same network.

All Steps of VE: BN, query, independencies, computation

Determining Good Elimination Orderings

• The order in which variables are eliminated can have a
profound impact on the amount of computation performed.

• DNs can represent four well-known heuristics for determining
good elimination orderings in BNs:

◦ min-neighbours (MN),
◦ min-weight (MW),
◦ min-fill (MF),
◦ weighted-min-fill (WMF).

• We introduced a new heuristic, called potential energy (PE),
based on DNs.

• PE can score more accurately than the above heuristics.

4. Conclusion

• Purely graphical approach to VE, which is often used to
introduce BN inference to beginners

• Faster way to test independencies in BNs

• Unify modeling and inference into one network using common
terminology

• DNs are like looking at BNs through a microscope

Watch www.darwiniannetworks.com for updates

www.darwiniannetworks.com

